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1. Disocclusion weights
Recall in Equation 2 of our main manuscript, we define

the following weighted RGB reconstruction loss:

Lpho =
∑
r

∑
j∈N (i)

Ŵj→i(r)ρ(Ci(r), Ĉj→i(r)). (1)

We define the rendered disocculusion weights as:

Ŵj→i(r) = 1−
∫ tf

tn

wi→jr(t) dt

wi→j(r(t)) = Ti(r(t))α(σi(r(t)))− Tj(r(t))α(σj(r(t)))
(2)

where Ti is the accumulated transmittance along the ray at
time i, α(σ) = 1 − exp(σ) is a function converting volu-
metric density to alpha value, and we call the expression
Ti(r(t))α(σi(r(t))) the accumulated weight at each sample
location r(t). When computing the loss during optimization,
we will assign a small weight to pixels where the accumu-
lated weight borrowed from time j is different from the
accumulated weight at i, addressing the motion disocclusion
ambiguity described in the NSFF paper [8].

2. Static-dynamic scene factorization
Visualization. In Figs. 1 and 2, we show additional results
from our motion segmentation module on all eight scenes
from the Nvidia Dynamic Scene Dataset [19]. Our motion
segmentation module can effectively segment moving ele-
ments from stationary elements.

Superivsion with segmentation masks. Recall that in
Equation 7 of our main manuscript, we use a masked re-
construction loss to supervise our model, but in practice we
observe that motion segmentation masks obtained by this
module do not perfectly align with the pixel boundaries of
moving objects. Therefore, we perform morphological ero-
sion and dilation to each mover mask Mi and each static
mask (1 −Mi) respectively to turn off the loss near mask
boundaries. For in-the-wild videos, we combine estimated
masks with semantic segmentation [6] through mask union
since we found that our Bayesian learning strategy can some-
times miss objects with subtle or colinear motions.
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Figure 1. Additional motion segmentation results. We show full
renderings B̂full

i (left) as well as motion segmentations overlaid
with rendered dynamic content αdy

i � B̂dy
i (right).

3. Regularization

Data-driven priors Ldata. Following NSFF [8], our data
driven priors consist of monocular depth and geometric con-
sistency terms Ldata = λzLz + λgeoLgeo.

The mono-depth term Lz minimizes the `1 difference
between expected disparity rendered from our representa-
tion and the disparity estimated from Zhang et al. [20]. We
observe that the estimated depths of moving objects from
Zhang et al. tend to degenerate when the method is applied
to in-the-wild videos where camera and object motion are
largely colinear. Therefore, we modify the framework of
Zhang et al. to improve its robustness to in-the-wild videos.
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Figure 2. Additional motion segmentation results. We show full
renderings B̂full

i (left) as well as motion segmentations overlaid
with rendered dynamic content αdy

i � B̂dy
i (right).

In particular, we make two major modifications in our imple-
mentation:

• We estimate both scale and shift in monocular disparity
space by aligning monocular depths with the structure
from motion (SfM) point cloud. We first compute the
median scale and shift for each input frame, and then
average these over the entire video to obtain a final
estimated scale and shift. We clip negatives disparity to
0.01, since negative depth will cause the optimization
to diverge.

• We add an extra depth regularization loss with weight
10 that encourages the current estimated depth to be
close to the initial depth estimated from DPT [13],
where we apply a scale-invariant depth loss [7].

The geometric consistency term Lgeo minimizes the `1
reprojection error between the observed 2D optical flow and
the expected 2D flow rendered from the motion trajectory
fields within time range [i − r, i + r]. We refer readers to
NSFF [8] for full derivations. Since estimated depth and flow
can be inaccurate, we decay the weights of the two corre-
sponding terms by a factor of 10 every 40K optimization
iterations.
Motion trajectory priors LMT. Our motion trajectory pri-
ors consist of cycle consistency and spatio-temporal smooth-

ness terms LMT = λcycleLcycle + λsmLsm.
The cycle consistency term Lcycle encourages that for a

given sampled 3D point x at time i and its correspondence
at time j, xi→j , their associated motion trajectory should be
consistent:

Lcycle =
∑
x

∑
j∈N (i)

wi→j(x)||∆x,i(j) + ∆xi→j ,j(i)||1

wi→j(x) = 1− |Ti(x)α(σi(x))− Tj(x)α(σj(x))| (3)

where wi→j is a disocculusion weight meant to address
motion disocculusion ambiguity per sample point.

The spatio-temporal smoothness term Lsm encourages
the estimated motion trajectory to be smooth in both space
and time, by enforcing 1) an `1 loss in relative displacement
between spatially neighboring points along a ray, 2) an `1
loss in relative displacement between temporally neighbor-
ing points along a motion trajectory, and 3) estimated scene
flows is potentially small:

Lsm =
∑

j∈N (i)

∑
t∈[tn,tf ]

||∆r(t),i(j)−∆r(t+1),i(j)||1 (4)

+ ||∆r(t),j(j + 1)−∆r(t),j+1(j + 2)||1 (5)

+
∑

j∈N (i)

∑
t∈[tn,tf ]

||∆r(t),i(j)||1 (6)

Compactness priors Lcpt. Our compactness prior Lcpt
consists of entropy and distortion terms Lcpt = λetpLetp +
λdistLdist.

The entropy loss encourages the static-dynamic scene
factorization to be close to binary by minimizing the entropy
of ratio of accumulated weights rendered from the time-
varying dynamic model:

Letp =
∑
r

−R(r) log(R(r))− (1−R(r)) log(1−R(r))

R(r) =
Ŵ dy(r)

Ŵ dy(r) + Ŵ st(r)
(7)

where Ŵ dy and Ŵ st are the accumulated weights rendered
from the time-varying and time-invariant models respec-
tively. Note that we don’t adopt the skewness parameter from
D2-NeRF [15] since we observe that it does not improve
decomposition quality in our framework. In addition, we
add the distortion loss Ldist proposed in Mip-NeRF 360 [1],
which encourages estimated geometry to be concentrated
by consolidating accumulated weights along the ray into a
small region. We refer readers to Mip-NeRF 360 [1] for full
derivations of this loss. We observed that these two terms im-
prove visual decomposition and rendering quality, but do not
yield noticeable improvements in our numerical evaluation.

4. Network architectures
Encoder-decoder network. In Table 1, we show the archi-
tecture of the encoder-decoder network used in our motion



Input (id: dimension) Layer Output (id: dimension)

0: W ×H × 4 7× 7 Conv, 64, stride 2 1: W
2 ×

H
2 × 64

1: W
2 ×

H
2 × 64 3× 3 MaxPool, stride 2 2: W

2 ×
H
2 × 64

2: W
2 ×

H
2 × 64 Residual Block 1 3: W

2 ×
H
2 × 64

3: W
2 ×

H
2 × 64 Residual Block 2 4: H

8 ×
H
8 × 128

4: H
8 ×

H
8 × 128 Residual Block 3 5: W

16 ×
H
16 × 256

5: W
16 ×

H
16 × 256 3× 3 Upconv, 128, factor 2 6: H

8 ×
H
8 × 128

6: H
8 ×

H
8 × 128 3× 3 Conv, 128 7: H

8 ×
H
8 × 128

7: H
8 ×

H
8 × 128 3× 3 Upconv, 128, factor 2 8: W

4 ×
H
4 × 128

8: W
4 ×

H
4 × 128 3× 3 Conv, 128 9: W

4 ×
H
4 × 64

9: H
4 ×

H
4 × 128 3× 3 Upconv, 128, factor 2 10: W

2 ×
H
2 × 128

10: W
2 ×

H
2 × 128 3× 3 Conv, 64 11: W

2 ×
H
2 × 64

11: H
2 ×

H
2 × 64 3× 3 Upconv, 64, factor 2 12: W ×H × 64

12: W ×H × 64 1× 1 Conv, 5 Out: W ×H × 5

Table 1. Encoder-decoder network for motion segmentation.
‘Conv” is a sequence of operations, including 2D convolution and
ReLU followed by Instance Normalization [18]. “Upconv” is a 2x
bilinear upsampling operator followed by a “Conv” operation.

Input (id: dimension) Layer Output (id: dimension)

0: W ×H × 3 7× 7 Conv, 64, stride 2 1: W
2 ×

H
2 × 64

1: W
2 ×

H
2 × 64 3× 3 MaxPool, stride 2 2: W

4 ×
H
4 × 64

2: W
4 ×

H
4 × 64 Residual Block 1 3: W

4 ×
H
4 × 64

3: W
4 ×

H
4 × 64 1× 1 Conv, 64 Out: W

4 ×
H
4 × 64

Table 2. 2D CNN feature extractor. ‘Conv” represents a sequence
of operations, including 2D convolution and ReLU followed by
Instance Normalization [18]. Residual Block 1 represents the first
residual block (as used in ResNet34 [4]).

segmentation module. Note that we do not adopt the skip
connections often used in U-Net, since such connections
would easily lead to a trivial decomposition solution where
the encoder-decoder network predicts entire scene content
by copying pixel information from the input frame.

2D CNN feature extractor. The network architecture of
our 2D CNN feature extractor is shown in Table 2; we use a
separate feature extractor for the coarse and fine models. We
predict a 64-channel feature map from an input RGB frame,
where the first 32 channels are used for the time-varying
model, and the last 32 channels are used for time-invariant
model.

Time-varying dynamic model. We show the architecture
of our time-varying dynamic model in Fig. 3. The input
to the model for each sample location is the time embed-
ding γ(i), where we use Fourier position encoding with ten
frequencies. The concatenation of image color and features
extracted from nearby source views are average-pooled to ob-
tain mean and variance vectors. The processed features from
the time embedding and image features are then element-
wise added and fed to a MLP to produce an intermediate
feature f ′j and pooling weight w′j . w′j is used to perform
weight pooling to the intermediate feature f ′j to obtain aggre-

gated features f ′′. The aggregated features of each sample
along the ray are then fed to the ray transformer to construct
features that are cross-attended. The cross-attended features
from the ray transformer are combined with global spatial
coordinate embedding γ(x) and view direction embedding
γ(d) to output per-sample density σi and color ci at time
i respectively. Note that we concatenate the global spatial
coordinate embedding γ(x) after the ray transformer instead
of before the ray transformer. The reason for this choice
is that if we append γ(x) before the ray transformer, the
global spatial coordinate embedding would leak the informa-
tion that the input ray is curved due to cross-time rendering.
However, during novel view synthesis, the input target ray is
always straight. The resulting inconsistency in the ray space
between optimization and inference stages would hurt model
performance in view interpolation.
Time-invariant static model. We show the architecture
of our time-invariant static model in Fig. 4. The input to the
model for each sample location includes 1) the embedding
of the ray coordinate with respect to the target view, γ(ri);
2) input features from each source view, which are the con-
catenation of source view color Cj and CNN feature fj ; 3)
the embedding of ray coordinates with respect to the source
view, γ(rj); 4) the relative viewing direction ∆dj ; and 5)
the global spatial coordinate embedding γ(x):

f∗j = [Cj |fj |γ(rj)|∆dj |γ(x)] (8)

where | is a concatenation operator. We use Fourier position
encoding with four frequencies for all coordinate embed-
dings. We then compute the dot product between the features
from source views and those from target rays. The multiplied
features are then fed into an MLP, yielding intermediate fea-
ture f ′j and pooling weights w′j . An aggregated feature f ′′

is then obtained by weight pooling f ′j through w′j . Next, the
aggregated feature f ′′ is fed into the ray transformer to pro-
duce a per-sample density σ, while the output features of
the ray transformer are concatenated with the relative view-
ing direction ∆dj and intermediate image feature f ′j from
each source view, and then these are fed as input to another
MLP to produce color blending weights wc

j corresponding
to each source view. The source view color Cj is then lin-
early blended through wc

j to obtain the final color c for each
sampled location.

5. Additional implementation details
Global spatial coordinate embedding With local image
feature aggregation alone, it is hard to determine density ac-
curately on non-surface or occluded surface points due to in-
consistent features from different source views, as described
in NeuRay [9]. Therefore, to improve global reasoning for
density prediction, we append a global spatial coordinate
embedding as an input to the ray transformer, in addition to
the time embedding, similar to the ideas from [16].
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Figure 3. Network architecture of our time-varying dynamic representation.
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Figure 4. Network architecture of our time-invariant static representation.

For the time-invariant model, we concatenate each ex-
tracted local image feature at each sampled point with its
corresponding (1) ray coordinates with respect to the target
view, (2) ray coordinates with respect to the source view, and
(3) xyz coordinates in the global reference frame. We use
Plücker coordinates [5] to represent ray coordinates since
these allow us to model arbitrary scene and camera geometry
without ambiguities or singularities.

For the time-varying model, recall that local image fea-
tures are aggregated along curved rays during the optimiza-
tion stage, but once optimization is complete, novel views
are rendered by aggregating features along straight rays cast
directly from the desired target view. As a result, we ob-
serve that concatenating the 3D coordinates of x or xi→j

with the corresponding 2D image features as inputs to the
ray transformer impairs view interpolation. Therefore, we

concatenate the encoded global 3D coordinates of x with the
features output from the attention module in the ray trans-
former before predicting density and color (please see the
supplement for more details of this design choice). For all
spatial coordinates, we apply a Fourier features–based po-
sitional encoding [10, 17] with four frequencies. but note
that our embedding is not mainly used for recovering high-
frequency details as in most of prior work and thus does not
require special scene parameterization.

Optimization/inference details. We reconstruct the en-
tire scene in a standard Euclidean space where we scale each
scene so that depth of the near plane is set to 4

3 . We set the
maximum value of the far plane depth to be 75. For our
coarse to fine sampling strategy, we observe that simulta-
neously optimizing coarse and fine models together tends
to be less stable in dynamic scene reconstruction, and we



Figure 5. Virtual views. We show views rendered at nearby vir-
tual viewpoints. The virtual views help model recover residual
details of fast moving objects that are hard to be tracked, and avoid
degenerated reconstruction in real world monocular videos.

therefore train the two models sequentially. Specifically, we
first optimize the coarse model for 300K iterations. We then
initialize the fine model with the weights of the pre-trained
coarse model and optimize it for another 150K iterations.

In image-based motion segmentation module, we set the
learning rate of the encoder-decoder network D to 4× 10−4.
We set the learning rate of the ray transformer and the 2D
CNN feature extractor to 4×10−4 and 8×10−4 respectively.

For our two main representations, we set the initial learn-
ing rate to 5× 10−4 for both ray transformers (representing
static and dynamic scene contents), and to 1 × 10−3 for
the 2D CNN feature extractors. We set the learning rate to
5× 10−4 for the motion trajectory MLP, and to 2× 10−4 for
the time-varying motion basis. We decay the learning rate by
a factor of 2 every 50K iterations for the coarse model, and
every 25K iterations for the fine model. At each optimization
step, we randomly choose a target image and sample a batch
of random rays with size 4096.

In the Nvidia Dynamic Scene and the UCSD Dynamic
Scene datasets, the training images are resized to 512× 288
and 533× 300 respectively. We set the weights of the data-
driven priors λz = 5 × 10−2, λgeo = 5 × 10−3. We set the
weights of the motion trajectory priors λcycle = 0.1, λsm =
0.05, where we increase the cycle consistency weight λcycle
by 0.1 every 40K iterations until it reaches 0.5. We set the
weights of compactness priors λetp = 5 × 10−4, λdist =
1× 10−3. For in-the-wild videos, we resize video frames to
768× 432, and we set λz = 0.3, λgeo = 2× 10−2 and keep
other hyper-parameters the same.

6DoF Stabilization. For all 6DoF stabilization results pro-
duced by our approach and prior methods, we apply a Gaus-
sian filter with kernel size 50 time steps to the first two col-
umn vectors in the camera rotation matrix and camera trans-
lation vector, and render novel views along this Gaussian-
filtered camera path.

Handling degeneracy of monocular videos. Prior
work [8] observed that optimization might converge to bad
local minimal if camera and object motions are close to
colinear, or object motions are too fast to track with flow
algorithms. To handling first case, during both training and
inference, we mask out input features for static time-invariant
model with estimated motion masks before performing fea-
ture aggregation and attention. To handle the second case,
we propose to synthesize virtual views via depths estimated
from [20]. These views are rendered at randomly sampled
nearby viewpoints. We randomly sample an image and use
it as an additional source view for multi-view feature aggre-
gation during rendering. Furthermore, to recover details of
fast moving objects, we fine-tune the models by supervising
full renderings from the models against randomly sampled
virtual views masked by estimated motion segmentation.
Fig. 5 show several examples of rendered virtual views. We
found it significantly improves optimization stability and
rendering quality for in-the-wild videos, while having no no-
ticeable impact on the two benchmarks due to uncorrelated
camera-object motion patterns [3].

6. Limitations

Our approach inherits similar limitations from prior meth-
ods [2, 8]. First, our method has a long optimization and ren-
dering time. Integrating recent voxel representations [11, 14]
into our IBR framework is an interesting research direction
for accelerating training and rendering. Second, although
our network architecture is based on that of IBRNet, our
system is a per-scene optimization approach, and thus does
not generalize across scenes and is unable to inpaint or out-
paint unseen regions. Third, the performance of our method
degrades if the target viewpoint is from an oblique angle
with respect to the input views, because our approach only
use source views within a small temporal window for re-
constructing moving content. Combining our approach with
canonical space–based methods using more advanced data-
driven priors [12] to overcome this limitation can be an excit-
ing research direction. Last, our representation renders novel
view by using nearby source views instead of constructing a
global scene representation like NeRFs. Therefore, rendered
contents can be unrealistic or blank if insufficient (typical
less than 5) correspondences from nearby source views are
visible. Developing a better view selection algorithm within
a volumetric IBR framework is an interesting direction to
explore for addressing this problem.
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